Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.01.474713

ABSTRACT

Thailand was the first country outside China to officially report COVID-19 cases. Despite the strict regulations for international arrivals, up until February 2021, Thailand had been hit by two major outbreaks. With a large number of SARS-CoV-2 sequences collected from patients, the effects of many genetic variations, especially those unique to Thai strains, are yet to be elucidated. In this study, we analysed 439,197 sequences of the SARS-CoV-2 spike protein collected from NCBI and GISAID databases. 595 sequences were from Thailand and contained 52 variants, of which 6 had not been observed outside Thailand (p.T51N, p.P57T, p.I68R, p.S205T, p.K278T, p.G832C). These variants were not predicted to be of concern. We demonstrate that the p.D614G, although already present during the first Thai outbreak, became the prevalent strain during the second outbreak, similarly to what was described in other countries. Moreover, we show that the most common variants detected in Thailand (p.A829T, p.S459F and p.S939F) do not appear to cause any major structural change to the spike trimer or the spike-ACE2 interaction. Among the variants identified in Thailand was p.N501T. This variant, which involves an asparagine critical for spike-ACE2 binding, was not predicted to increase SARS-CoV-2 binding, thus in contrast to the variant of global concern p.N501Y. In conclusion, novel variants identified in Thailand are unlikely to increase the fitness of SARS-CoV-2. The insights obtained from this study could aid SARS-CoV-2 variants prioritisations and help molecular biologists and virologists working on strain surveillance.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.04.21252931

ABSTRACT

Infection with SARS-CoV-2 has a wide range of clinical presentations, from asymptomatic to life-threatening. Old age is the strongest factor associated with increased COVID19-related mortality, followed by sex and pre-existing conditions. The importance of genetic and immunological factors on COVID19 outcome is also starting to emerge, as demonstrated by population studies and the discovery of damaging variants in genes controlling type I IFN immunity and of autoantibodies that neutralize type I IFNs. The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus spike protein, facilitating entry into target cells. We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760), which has a minor allele frequency of [~]25% in the population. In a large population of SARS-CoV-2 positive patients, we show that this variant is associated with a reduced likelihood of developing severe COVID19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3x10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, impacts the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID19. Further studies are needed to assess the expression of the TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID19. Clinical trials are needed to confirm this.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.26.116608

ABSTRACT

SARS-CoV-2 is a novel virus causing mainly respiratory, but also gastrointestinal symptoms. Elucidating the molecular processes underlying SARS-CoV-2 infection, and how the genetic background of an individual is responsible for the variability in clinical presentation and severity of COVID-19 is essential in understanding this disease. Cell infection by the SARS-CoV-2 virus requires binding of its Spike (S) protein to the ACE2 cell surface protein and priming of the S by the serine protease TMPRSS2. One may expect that genetic variants leading to a defective TMPRSS2 protein can affect SARS-CoV-2 ability to infect cells. We used a range of bioinformatics methods to estimate the prevalence and pathogenicity of TMPRSS2 genetic variants in the human population, and assess whether TMPRSS2 and ACE2 are co-expressed in the intestine, similarly to what is observed in lungs. We generated a 3D structural model of the TMPRSS2 extracellular domain using the prediction server Phyre and studied 378 naturally-occurring TMPRSS2 variants reported in the GnomAD database. One common variant, p.V160M (rs12329760), is predicted damaging by both SIFT and PolyPhen2 and has a MAF of 0.25. Valine 160 is a highly conserved residue within the SRCS domain. The SRCS is found in proteins involved in host defence, such as CD5 and CD6, but its role in TMPRSS2 remains unknown. 84 rare variants (53 missense and 31 leading to a prematurely truncated protein, cumulative minor allele frequency (MAF) 7.34x10-4) cause structural destabilization and possibly protein misfolding, and are also predicted damaging by SIFT and PolyPhen2 prediction tools. Moreover, we extracted gene expression data from the human protein atlas and showed that both ACE2 and TMPRSS2 are expressed in the small intestine, duodenum and colon, as well as the kidneys and gallbladder. The implications of our study are that: i. TMPRSS2 variants, in particular p.V160M with a MAF of 0.25, should be investigated as a possible marker of disease severity and prognosis in COVID-19 and ii. in vitro validation of the co-expression of TMPRSS2 and ACE2 in gastro-intestinal is warranted.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL